Math, asked by Meghanasambaru, 3 days ago

Prove that (1+tan^ theta)(1-sin theta)(1+sin theta )=1​

Answers

Answered by jitendra12iitg
0

Answer:

See explanation

Step-by-step explanation:

  (1+\tan^2\theta)(1-\sin\theta)(1+\sin\theta)

  =(\sec^2\theta)(1^2-\sin^2\theta)

  • Since (a-b)(a+b)=a^2-b^2 and \sec^2\theta-\tan^2\theta=1

  =\sec^2\theta\times (1-\sin^2\theta)\\=\sec^2\theta\cos^2\theta

  • Since \sin^2\theta+\cos^2\theta=1

  =(\sec\theta\cos\theta)^2=1^2=1

Hence proved

Similar questions