Math, asked by kushwahaashish433, 3 months ago

Prove that (1 + tan theta) ^ 2 + (1 + cot theta) ^ 2 = (sec(theta) + cos e * c * theta) ^ 2 ".​

Answers

Answered by mathdude500
2

\large\underline{\sf{Given \:Question - }}

 \bf \: Prove  \: that \sf \:  {(1 + tan\theta \:)}^{2} +  {(1 + cot\theta \:)}^{2} =  {(sec\theta \: + cosec\theta \:)}^{2}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf{ \: 1 +  {tan}^{2}\theta \: =  {sec}^{2}  \theta \:}}

 \boxed{ \bf{ \: 1 +  {cot}^{2}\theta \: = cosec^{2}\theta \:}}

 \boxed{ \bf{ \: tan\theta \: = \dfrac{sin\theta \:}{cos\theta \:} }}

 \boxed{ \bf{ \: cot\theta \: = \dfrac{cos\theta \:}{sin\theta \:} }}

 \boxed{ \bf{ \:  {x}^{2}  +  {y}^{2}  + 2xy =  {( {x + y) } }^{2} }}

 \boxed{ \bf{ \: \dfrac{1}{cos\theta \:}  = sec\theta \:}}

 \boxed{ \bf{ \: \dfrac{1}{sin\theta \:}  = cosec\theta \:}}

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:{(1 + tan\theta \:)}^{2} +  {(1 + cot\theta \:)}^{2}

 \rm \:  =  \: 1 +  {tan}^{2}\theta \: + 2tan\theta \: + 1 +  {cot}^{2}\theta \: + 2cot\theta \:

 \rm \:  =  \: (1 +  {tan}^{2}\theta) \:  + (1 +  {cot}^{2}\theta) \: + 2(cot\theta \: + tan\theta \: )

 \rm \:  =  \:  {sec}^{2} \theta \: +  {cosec}^{2} \theta \: + 2\bigg( \dfrac{sin\theta \:}{cos\theta \:}  + \dfrac{cos\theta \:}{sin\theta \:} \bigg)

 \rm \:  =  \:  {sec}^{2}\theta \: +  {cosec}^{2}\theta \: + 2\bigg(\dfrac{ {sin}^{2}\theta \: +  {cos}^{2}\theta \:}{sin\theta \:cos\theta \:}  \bigg)

 \rm \:  =  \:  {sec}^{2}\theta \: +  {cosec}^{2}\theta \: +2\bigg(\dfrac{1}{sin\theta \:cos\theta \:}  \bigg)

 \rm \:  =  \:  {sec}^{2}\theta \: +  {cosec}^{2}\theta \: +2 \: sec\theta \:cosec\theta \:

 \rm \:  =  \:  {(sec\theta \: + cosec\theta \:)}^{2}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions