Math, asked by Anonymous, 3 months ago

prove that
(1+tan15°)(1+tan30°)=2

Answers

Answered by payalft029
0

Answer:

2

Step-by-step explanation:

tan (A+B) = (tanA + tanB)/(1-tanA×tanB )

here A= 30, B= 15

tan(45) = (tan30 + tan 15)/(1-tan30×tan15)

and we know that tan(45) =1

So, 1 = ( tan30 + tan 15)/(1-tan30×tan15)

Taking denominator to the Right hand side

(1-tan30×tan15) = ( tan30 + tan 15)

Hence, tan30 + tan 15+ tan30×tan15=1

(1+0.58)(1+ 0.27)

=>1.58 x 1.27

=>2 (Proved)

I hope it will help you

Answered by NewGeneEinstein
3

To prove:-

  • \bf (1+tan15°)(1+tan30°)=2

Proof:-

We know that

\boxed{\bf 15°+30°=45°}\\ \\

\sf{:}\implies tan (15°+30°)=tan45°\\ \\

\sf{:}\implies \dfrac {tan15°+tan30°}{1-tan15°.tan30°}=1 \\ \\

\sf{:}\implies tan15°+tan30°=1-tan15°.tan30°\\ \\

\sf{:}\implies tan15°+tan30°+tan15°.tan30°=1 \\ \\

\sf{:}\implies 1+tan15°+tan30°+tan15°.tan30°=1+1 \\ \\

\sf{:}\implies 1+tan15°+tan30°+tan15°.tan30°=2 \\ \\

\sf{:}\implies 1 (1+tan15°)+tan30°(1+tan15°)=2 \\ \\

\sf{:}\implies (1+tan15°)(1+tan30°)=2\\ \\

\therefore{\huge{ \bf{(Proved)}}}

Similar questions