Math, asked by gauravsaikia965, 1 year ago

prove that (1+tan17°) (1+tan28°) =2​

Answers

Answered by Ineedanswerok
0

Answer:

U dhdhshshshshshshhsshsheueueu

Answered by lublana
5

Answer with Step-by-step explanation:

LHS

(1+tan17^{\circ})(1+tan28^{\circ})

1(1+tan28)+tan17(1+tan28)

1+tan28+tan17+tan17tan28...(1)

Formula:tan(x+y)=\frac{tanx+tany}{1-tanxtany}

Tan(28+17)=\frac{tan28+tan17}{1-tan28tan17}

tan45=\frac{tan28-tan17}{1-tan28tan17}

We know that tan45 degree=1

Substitute the values

tan28+tan17=1-tan28tan17

Substitute the values

1+1-tan28tan17+tan28tan17

2=RHS

LHS=RHS

Hence, proved.

#Learns more:

https://brainly.in/question/8104614

Similar questions