Prove that (1+tan2
x) (1−sin2
x)=1.
Answers
Answered by
0
Answer:
MATHS
MEDIUM
Solve the following equation:
(1−tanx)(1+sin2x)=1+tanx
Share
Study later
ANSWER
(1−tanx)(1+sin2x)=1+tanx
1+sin2x=
1−tanx
1+tanx
(sinx+cosx)
2
=
cosx−sinx
sinx+cosx
sinx+cosx=0 or cos
2
x−sin
2
x=1
tanx=−1 or cos2x=0
x=nπ+
4
3π
or x=
4
(2m+1)π
Similar questions