Math, asked by nikhil1339, 11 months ago

prove that 1-tan² x/2 / 1+tan² x/2 = cosx.

Wrong and illogical answers will be reported immediately.....​

Answers

Answered by azizalasha
2

Answer:

proved

Step-by-step explanation:

LHS =  1-tan² x/2 / 1+tan² x/2 =  1-tan² x/2÷ 1+tan² x/2  

= 1 - sin²x/2/cos²x/2 ÷  1+sin²x/2/cos²x/2

= cos²x/2 - sin²x/2 ÷ cos²x/2 + sin²x/2

= cos²x/2 - sin²x/2

= cosx

= RHS

Answered by mysticd
3

Answer:

 \red{ \frac{ 1-tan^{2} \frac{x}{2}}{1+tan^{2} \frac{x}{2}}}= \green { cos x}

Step-by-step explanation:

 LHS =\red{ \frac{ 1-tan^{2} \frac{x}{2}}{1+tan^{2} \frac{x}{2}}}

 Let \: A = \blue {\frac{x}{2}}\: ---(1)

 =  \frac{ 1-tan^{2} A}{1+tan^{2}A} \\= \frac{ 1-tan^{2}A}{sec^{2}A}

 \boxed { \pink { 1+tan^{2}A = sec^{2}A}}

 = \frac{ 1 - \frac{sin^{2}A}{cos^{2}A}}{\frac{1}{cos^{2}A}}

 = cos^{2}A \left( 1- \frac{sin^{2}{A}}{cos^{2}A}\right)\\= cos^{2}A - sin^{2}A

 = cos2A

\boxed { \pink { cos^{2}A - sin^{2}A = cos2A }}

 = cos 2\times \frac{x}{2} \: \: [ from \:(1) ]

 =\green { cos x} \\= RHS

Therefore.,

 \red{ \frac{ 1-tan^{2} \frac{x}{2}}{1+tan^{2} \frac{x}{2}}}= \green { cos x}

•••♪

Similar questions