Math, asked by mehaqshaik, 1 month ago

Prove that
(1+tan²A)+(1+1/tan²A)=1/sin²A-sin⁴A.​

Answers

Answered by sharanyalanka7
4

Answer:

Step-by-step explanation:

To Prove :-

\left(1+tan^2A\right)+\left(1+\dfrac{1}{tan^2A}\right)=\dfrac{1}{sin^2A-sin^4A}

Solution :-

Taking L.H.S :-

\left(1+tan^2A\right)+\left(1+\dfrac{1}{tan^2A}\right)

=\left(1+(tanA)^2\right)+\left(1+\bigg(\dfrac{1}{tan^2A}\bigg)^2\right)

We know that "tanA = sinA/cosA"

=\left(1+\bigg(\dfrac{sinA}{cosA}\bigg)^2\right)+\left(1+\left(\dfrac{1}{\dfrac{sinA}{cosA}}\right)^2\right)

= 1+\dfrac{sin^2A}{cos^2A}+1+\dfrac{cos^2A}{sin^2A}

= \dfrac{cos^2A+sin^2A}{cos^2A}+\dfrac{sin^2A+cos^2A}{sin^2A}

We know that "sin^2A+cos^2A = 1"

=\dfrac{1}{cos^2A}+\dfrac{1}{sin^2A}

Taking L.C.M :-

= \dfrac{sin^2A+cos^2A}{cos^2A\times sin^2A}

We know that "sin^2A+cos^2A = 1"

=\dfrac{1}{cos^2Asin^2A}

From the trigonometric identity " sin^2A+cos^2A=1"

We can write "cos^2A = 1 - sin^2A"

=\dfrac{1}{(1-sin^2A)sin^2A}

=\dfrac{1}{sin^2A-sin^4A}

= R.H.S

Hence, L.H.S = R.H.S.

Similar questions