prove that (1 + tan²A) + (1 + 1 ÷ tan²A) = 1÷sin²A - sin⁴A
Answers
Answered by
0
Answer:
First substitute Value of
Tan²A = Sin²A/Cos²A
Then simplify
Lastly ,Substitute Cos²A = 1 - Sin²A
To get your answer
Hope it helps : )
Step-by-step explanation:
Answered by
0
Answer:
Step-by-step explanation:
L.H.S. = ( 1 + tan² A ) + ( 1 + 1 / tan² A )
= ( 1 + tan² A ) + ( 1 + cot² A )
= ( 1 + sin² A / cos² A ) + ( 1 + cos² A / sin² A )
= ( cos² A + sin² A / cos² A ) + ( sin² A + cos² A / sin² A )
= ( 1 / cos² A ) + ( 1 / sin² A )
= ( sin² A + cos² A ) / sin² A. cos² A
= 1 / sin² A. cos² A
= 1 / sin² A ( 1 - sin² A )
= 1/ sin² A - sin⁴ A
= R.H. S
Hence it is proved
Similar questions