prove that
(1+tan²A/1+cot²A)=(1-tan²A/1-cotA)²=tan²A
Answers
Answered by
0
Answer:
( 1 + tan²A / 1 + cot²A ) = ( 1 - tan A / 1 - cot A )² = tan²A
Step-by-step explanation:
LHS
( 1 + tan²A / 1 +cot²A )
= 1 + tan²A / 1 + 1/tan²A
= 1 + tan²A / tan²A + 1 / tan²A
= Tan²A ( 1 + tan²A / tan²A + 1 )
= tan²a
RHS
( 1 - tan A / 1 - cot A )²
= (1 - tan A)² / (1 - cot A)²
= 1 + tan²A - 2tan A / 1 + cot²A - 2cot A
= sec²A - 2tan A / cosec²A - 2cot A
= 1/cos²A - 2sinA/cosA / I/sin²A - 2cosA/sinA ( take common denominators)
= 1/cos²A - 2sinAcosA/cos²A / I/sin²A - 2cosAsinA/sin²A
= 1 - 2sinAcosA / cos²A / I- 2cosAsinA/sin²A
= 1 - 2sinAcosA / cos²A × sin²A/ I- 2cosAsinA
= sin²A / cos²A
= Tan²A
∴ LHS = RHS = tan²A
Hence Proved
Please Mark My Answer As Brainliest
⊕Thank You ⊕
Similar questions
English,
1 month ago
India Languages,
1 month ago
English,
2 months ago
Accountancy,
2 months ago
English,
10 months ago
English,
10 months ago