prove that 1+tan²A/1+cot²A=(1+tanA/1+cotA )²
Answers
Answered by
0
Answer:
L:H:S:
1+tan²A/ 1+ cot² A
= 1+(sin²A/cos²A) /1+( cos²A/sin²A)
=(cos²A+sin ²A) /cos²A/(sin²A +cos²A)/sin²A
= 1/cos²A / 1/sin²A
= tan²A
again,
R:H:S:
(1+tanA/1+cotA)²
={1+( sinA/cosA)/1+ (cosA /sinA)}
= {(cosA +sinA)/cosA/ (sinA+cosA)/sinA}²
= (sinA/cos A)²
= tan²A
L:H:S= R:H:S
hence prooved.
please mark it as brainlist if it helps ✨✨
Similar questions