prove that 1+tan2A/1+cot2A = tan2A
Answers
Answered by
4
Answer:
Given that: 1+tan² A1+cot²A=[1-tanA1-cotA]²=tan²A
We will first solve the equation on LHS
LHS:
= 1+tan²A / 1+cot²A
Using the trignometric identities we know that 1+tan²A= Sec²A and 1+cot²A= Cosec²A
= Sec²A/ Cosec²A
On taking the reciprocals we get
= Sin²A/Cos²A
= tan²A
RHS:
=(1-tanA)²/(1-cotA)²
Substituting the reciprocal value of tan A and cot A we get,
=(1-sinA/cosA)²/(1-cosA/sinA)²
=[(cosA-sinA)/cosA]²/ [(sinA-cos)/sinA)²
=(cosA-sinA)²×sin²A /Cos²A. /(sinA-cosA)²
=1×sin²A/Cos²A×1.
=tan
The values of LHS and RHS are same.
Hence proved
Answered by
10
Answer:
(1+tan2A)/(1+cot2A)
= (1+tan2A)/(1+1/tan2A)
(1+tan2A)/(tan2A+1)/tan2A
= tan2A
RHS
Similar questions
English,
3 months ago
Business Studies,
3 months ago
Biology,
7 months ago
Political Science,
7 months ago
Physics,
10 months ago
English,
10 months ago