Math, asked by MrMorningsStar5657, 9 months ago

Prove That:
1-tan²A/1+tan²A=cos²A-sin²A 

Answers

Answered by seenuu53
7

LHS:

 \frac{1 -  {tan}^{2} a}{1 +  {tan}^{2}a }

 \frac{1 -  \frac{ {sin}^{2}a }{ {cos}^{2} a} }{1 +  \frac{ {sin}^{2}a }{ {cos}^{2} a} }

 \frac{ \frac{ {cos}^{2}a -  {sin}^{2}a  }{ {cos}^{2}a } }{ \frac{ {cos}^{2}a +  {sin}^{2} a }{ {cos}^{2}a } }

 \frac{ {cos}^{2}a -  {sin}^{2} a }{ {cos}^{2} a +  {sin}^{2} a}

 {cos}^{2} a -  {sin}^{2} a \:  \: (here \:  {sin}^{2} a + {cos}^{2}a = 1)

LHS = RHS

hence proved

plz mark as brainlist

Similar questions