Math, asked by pushkardigraskar2005, 9 months ago

PROVE THAT 1-TAN2A/1+TAN2A=COS2A-SIN2A

Answers

Answered by pulakmath007
14

SOLUTION

TO PROVE

  \displaystyle \sf{ \frac{1 -  { \tan}^{2}A }{1  +  { \tan}^{2}A}  = { \cos}^{2}A -  { \sin}^{2}A}

PROOF

PROCESS : 1

  \displaystyle \sf{ \frac{1 -  { \tan}^{2}A }{1  +  { \tan}^{2}A}  }

  \displaystyle \sf{  = \frac{1 -  \frac{{ \sin}^{2}A}{{ \cos}^{2}A}  }{1  +  \frac{{ \sin}^{2}A}{{ \cos}^{2}A}}  }

  \displaystyle \sf{  = \frac{ \frac{{ \cos}^{2}A - { \sin}^{2}A}{{ \cos}^{2}A}  }{  \frac{{ \cos}^{2}A + { \sin}^{2}A}{{ \cos}^{2}A}}  }

  \displaystyle \sf{   =  \frac{{ \cos}^{2}A - { \sin}^{2}A}{{ \cos}^{2}A  +  { \sin}^{2}A}   }

  \displaystyle \sf{   =  \frac{{ \cos}^{2}A - { \sin}^{2}A}{1}   }

  \displaystyle \sf{   =  { \cos}^{2}A - { \sin}^{2}A   }

PROCESS : 2

  \displaystyle \sf{ \frac{1 -  { \tan}^{2}A }{1  +  { \tan}^{2}A}  }

  \displaystyle \sf{ =  \cos \:2A  }

  \displaystyle \sf{  = { \cos}^{2}A -  { \sin}^{2}A}

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

2. proove that : tan9A - tan6A -tan3A = tan9A.tan 6A.tan tan 3A

https://brainly.in/question/9394506

Answered by LeviAckermann
1

Answer:

The proof

Step-by-step explanation:

LHS= 1-tan²A/1+tan²A

1-sin²A/cos²A

-------------------

sec²A

 1                    sin²A/cos²A

-------     -         -----------------

sec²A                 sec²A

                      sin²A/cos²A

cos²A    -        -----------------

                          1/cos²A

cos²A gets cancelled

= cos²A - sin²A = RHS

LHS = RHS Hence proved

Similar questions