Math, asked by sutongvishalldeo, 19 days ago

Prove that. (1+tan²A) CotA / Cosec² A = tanA​

Answers

Answered by aks4563
1

Answer:

Step-by-step explanation:

LHS = (1+tan²A) CotA / Cosec²A

= Sec²A CotA / Cosec²A [∵(1+tan²A)=Sec²A]

= (1/Cos²A × CosA/SinA) / (1/Sin²A)

= [1/(CosA SinA)] / (1/Sin²A)

= Sin²A / (CosA SinA)

= SinA / CosA

= tanA

= RHS [proved]

Similar questions