Prove that. (1+tan²A) CotA / Cosec² A = tanA
Answers
Answered by
1
Answer:
Step-by-step explanation:
LHS = (1+tan²A) CotA / Cosec²A
= Sec²A CotA / Cosec²A [∵(1+tan²A)=Sec²A]
= (1/Cos²A × CosA/SinA) / (1/Sin²A)
= [1/(CosA SinA)] / (1/Sin²A)
= Sin²A / (CosA SinA)
= SinA / CosA
= tanA
= RHS [proved]
Similar questions