Math, asked by prashantmisra, 3 months ago

Prove that 1 + tan2a= sec2a

Answers

Answered by Anonymous
3

</p><p>\begin{gathered}1 + {tan}^{2} = {sec}^{2} \\ = 1 + \frac{ {sin}^{2} }{ {cos}^{2} }(tan = \frac{sin}{cos} ) \\ = \frac{ {cos }^{2}+ {sin}^{2} }{cos {}^{2} }lcm \\ = \frac{1}{cos {}^{2} } {sin}^{2} + {cos}^{2} = 1 \\ = sec {}^{2} \\ hence \: proved\end{gathered}1+tan2=sec2=1+cos2sin2(tan=cossin)=cos2cos2+sin2lcm=cos21sin2+cos2=1=sec2 \\  \\ </p><p>

Answered by Intelligentcat
9

Correct Question :

\implies\sf 1 + Tan^{2}A = Sec^{2}A \\ \\

Solution :

Now,

We have to know that,

  • \implies\sf Tan A = \dfrac{Sin A}{Cos A} \\ \\

  • \implies\sf Sec A = \dfrac{1}{Cos A} \\ \\

  • \implies\sf Sin^{2} A + Cos^{2} A = 1 \\ \\

Now, From above we know that,

\implies\sf Tan A = \dfrac{Sin A}{Cos A} \\ \\

So,

\implies\sf Tan^{2}A = \dfrac{Sin^{2} A}{Cos^{2} A} \\ \\

Now,

\implies\sf 1 + \dfrac{Sin^{2} A}{Cos^{2} A} \\ \\

Taking L.C.M

\implies\sf \dfrac{Cos^{2} A + Sin^{2} A}{Cos^{2} A} \\ \\

Using Trigonometry Identity :

\implies\sf \dfrac{1}{Cos^{2} A} \\ \\

R.H.S side now,

\dashrightarrow\:\:\sf  Sec \: A =  \dfrac{1}{Cos A} \\ \\

Then,

\dashrightarrow\:\:\sf  Sec^{2} \: A  = \dfrac{1}{Cos^{2} A} \\ \\

Therefore,

\dashrightarrow\:\: { \underline{ \boxed{\sf  \dfrac{1}{Cos^{2} A} = \dfrac{1}{Cos^{2} A}  }}} \\

{\boxed{\bf{L.H.S = R.H.S}}} \\

Hence, Proved !!

Similar questions