prove that
1+tan2A.tanA=sec2A
Answers
Answered by
3
We know that Tan2A = Sin2A/Cos2A and TanA = SinA/CosA
substituting we get
= 1 + Tan2ATanA
but Cos(A - B) = CosACosB +SinASinB
⇒Cos2A CosA + Sin2A SinA = Cos(2A - A) = CosA
⇒ = 1 + Tan2ATanA
⇒ 1/Cos2A = 1 + Tan2ATanA
⇒ Sec2A = 1 + Tan2ATanA
dhiraj348:
i dont understand
Similar questions