Math, asked by vaibhavyadav947, 11 months ago

prove that 1+tan2AtanA=sec2A​

Answers

Answered by ahsanatminshin
1

Step-by-step explanation:

1+tan2A/tanA

sec2A//sinA/cosA

1/cos2A

sec2A

HOPE U LIKE IT&PLS MARK IT AS BRAINLIEST &IF POSSIBLE PLS FOLLOW ME.IT WILL BE SWEET OF U♡♡♡

Answered by AdorableMe
0

Answer:

Proved !!

Step-by-step explanation:

1 + \tan\,2 A (\tan\,A) = \sec\,2 A\text{Right hand side}\sec\,2 A = \dfrac{1}{\cos\,2 A} =\dfrac{1}{\cos^2\,A - \sin^2\,A}=\dfrac{cos^2\,A + \sin^2\,A}{\cos^2\,A - \sin^2\,A}=\dfrac{1 + \tan^2\,A}{1 - \tan^2\,A}= \dfrac{1 - \tan^2\,A + 2\tan^2\,A}{1 - \tan^2\,A}= \dfrac{1 - \tan^2\,A}{1 - \tan^2\,A} + \dfrac{2\tan^2\,A}{1 - \tan^2\,A}= 1 + \dfrac{2\tan\,A}{1 - \tan^2\,A}\times \tan\,A

=1+ tan2AtanA

Similar questions