Math, asked by kamalteja3488, 1 year ago

prove that (1+tan²teeta) (1+sin teeta) (1-sin teeta) =1

Answers

Answered by Raunac
2
hey!!

sinθ=1sinθ1-sinθ-sin2θ1-sinθ=1-sin3θsinθ1-sinθ=13-sinθ3sinθ1-sinθ=1-sinθ12+sinθ+sin2θsinθ1-sinθ=1-sinθ1+sinθ+sin2θsinθ1-sinθ=1+sinθ+sin2θsinθ=1sinθ+1+sinθ=1+sinθ+1sinθ=RHSHence, proved.

by Raunac yadav
Answered by atul103
48
#ur Ans
_________

we know that

 = > (1 + \tan {}^{2} x) = { \sec }^{2} x \\ \\ = > and \: \: (1 - {sin}^{2} x )= {cos}^{2} x \\ \\ = > now \\ \\ putting \: the \: value \\ \\ = > {sec}^{2} x \times {cos}^{2} x \\ \\ = > \frac{1}{cos {}^{2} x}  \times {cos}^{2} x \\ \\ = > cancelled \: cos {}^{2} x \\ \\ = > 1 \:hence \: proved

✌:-)☺

Anonymous: thx fr thx
Anonymous: ☺☺☺
Similar questions