Math, asked by iryachoudhari, 6 months ago

prove that


[1+tan²x/1+cot²x]- [1-tan²x/1-cot²x]²-0

pls answer fast​

Answers

Answered by Anonymous
1

Correct Question:-

Prove that

 \sf\Bigg(\dfrac{1 +  {tan}^{2} x}{1 +  {cot}^{2}x } \Bigg) -\Bigg(\dfrac{1  - tan \:  x}{1  -   {cot }\: x }\Bigg) ^{2}  = 0

Identities used

  \blue{\sf \longrightarrow \: 1 +  {tan}^{2} x = sec^{2} x \:  \:  \:  - (1)}

  \red{\sf \longrightarrow \: 1 +  {cot}^{2} x = cosec^{2} x \:  \:  - (2)}

 \orange{ \sf \longrightarrow \:tan \: x =  \dfrac{sin \: x}{cos \: x}  \:  \:  \:  - (3)}

Solution:-

We have LHS

  \implies\sf\Bigg(\dfrac{1 +  {tan}^{2} x}{1 +  {cot}^{2}x } \Bigg) -\Bigg(\dfrac{1  - tan \:  x}{1  -   {cot} \: x }\Bigg) ^{2}

 \sf \implies \Bigg( \dfrac{sec^{2} \: x }{ {cosec}^{2} \: x} \Bigg) - \dfrac{\Bigg(1 -  \frac{sin \: x}{cos \: x} \Bigg)^{2} }{\Bigg(1 -  \frac{cos \: x}{sin \: x } \Bigg)^{2}   }

 \sf \implies \Bigg(\dfrac{1}{ {cos}^{2}x }  \times sin ^{2} x\Bigg) -  \Bigg[\dfrac{ \dfrac{(cos \: x - sin \: x)}{ {cos}^{2} x} }{ \dfrac{(sin \: x - cos \: x)}{ {sin}^{2}x } } \Bigg]

 \sf \implies\Bigg( \dfrac{ {sin}^{2}x }{ {cos}^{2} x} \Bigg) -  \Bigg(\dfrac{ \cancel{cos \: x - sin \: x}}{ {cos}^{2}x }  \times \dfrac{ {sin}^{2} x} {\cancel{cos \: x - sin \: x} }\Bigg)

\sf \implies\Bigg( \dfrac{ {sin}^{2}x }{ {cos}^{2} x} \Bigg)  -  \Bigg( \dfrac{ {sin}^{2}x }{ {cos}^{2} x} \Bigg)

 \implies \sf \:  {tan}^{2} x -  {tan}^{2} x

 \sf \implies 0

 \blue{ \implies \sf \mathbb{R} . \mathbb{H}.\mathbb{S}}

Hence, proved

Similar questions