Prove that:
1. tan35°tan40°tan45°tan50°tan55°=1
Answers
Answered by
75
at first we can write
tan35 = tan(90-55) = cot55
tan40 = tan(90-50) = cot50
tan45 = 1
then,
1.tan35 tan40 tan45 tan50 tan55 = 1
1.tan(90-55) tan(90-50). 1.tan 50 tan55 = 1
cot55 cot50 tan50 tan55 =1
cot55 cot50 1/cot50 1/cot55 = 1
1 = 1
tan35 = tan(90-55) = cot55
tan40 = tan(90-50) = cot50
tan45 = 1
then,
1.tan35 tan40 tan45 tan50 tan55 = 1
1.tan(90-55) tan(90-50). 1.tan 50 tan55 = 1
cot55 cot50 tan50 tan55 =1
cot55 cot50 1/cot50 1/cot55 = 1
1 = 1
Answered by
0
Hence proved that Tan35°Tan40°Tan45°Tan50°Tan55° = 1
Step-by-step explanation:
To prove,
Tan35°Tan40°Tan45°Tan50°tan55° = 1
so,
Tan35° * Tan40° * Tan45° *Tan50° * Tan55°
= Tan(90°- 55°) * Tan(90°-50°) * Tan45° * Tan 50° * Tan55°
= Cot55° * Cot50° * 1 * Tan50° * Tan55°
= 1/Tan55° * 1/Tan50° * Tan50° * Tan55°
by canceling Tan50° * Tan55° with Tan50° and Tan55°,
= 1
Hence proved that,
tan35°tan40°tan45°tan50°tan55° = 1
Learn more: Trigonometry
brainly.in/question/13715501
Similar questions