Math, asked by meenakshi310320, 1 year ago

Prove that: 1+tanA/cosecA+1+cotA/secA=secA+cosecA

Answers

Answered by mysticd
5
Hi ,

1 ) ( 1 + tanA )/cosecA

= ( 1 + sinA/cosA )/( 1 / sinA )

= [sinA ( cosA + sinA )]/cosA ---( 1 )

2 ) ( 1 + cot A )/secA

= ( 1 + cosA/sinA )/( 1/cosA )

=[ cosA ( sinA + cosA )]/sinA --( 2 )

Now ,

LHS = ( 1 ) + ( 2 )

=[sinA(sinA+cosA)]/cosA+[cosA(sinA+cosA)]/sinA

= ( sinA + cosA )[ sinA/cosA + cosA/sinA ]

= ( sinA + cosA )[ ( sin²A+cos²A)/sinAcosA ]

= ( sinA + cosA )/sinAcosA

= sinA/sinAcosA + cosA/sinAcosA

= 1/ cosA + 1/sinA

= secA + cosecA

= RHS

I hope this helps you.

: )

meenakshi310320: Thank you
Answered by Puneeth1235
3

Answer:

Step-by-step explanation:

(1).( 1 + tanA )/cosecA

= ( 1 + sinA/cosA )/( 1 / sinA )

= [sinA ( cosA + sinA )]/cosA ---( 1 )

(2).( 1 + cot A )/secA

= ( 1 + cosA/sinA )/( 1/cosA )

=[ cosA ( sinA + cosA )]/sinA --( 2 )

Now ,

LHS = ( 1 ) + ( 2 )

=[sinA(sinA+cosA)]/cosA+[cosA(sinA+cosA)]/sinA

= ( sinA + cosA )[ sinA/cosA + cosA/sinA ]

= ( sinA + cosA )[ ( sin²A+cos²A)/sinAcosA ]

= ( sinA + cosA )/sinAcosA

= sinA/sinAcosA + cosA/sinAcosA

= 1/ cosA + 1/sinA

= secA + cosecA

= RHS

Similar questions