Math, asked by jaditi055, 10 months ago

Prove that : 1/(tanA+cotA) = cosAsinA​

Answers

Answered by DrNykterstein
6

\sf \Rightarrow \quad  \dfrac{1}{tan \: A + cot \: A}  = cos \: A  \: sin \: A \\  \\  \sf Solving  \: LHS \:  separately, \\  \\ \sf \Rightarrow \quad  \frac{1}{tan \: A + cot \: A}  \\  \\ \sf \Rightarrow \quad  \frac{1}{ \frac{sin \: A}{cos \: A}  +  \frac{cos \: A}{sin \: A} }   \qquad \bigg[ \because \:  tan \: A = \frac{sin \: A}{cos \: A}  \:  \:  ,\quad cot \: A =  \frac{1}{tan \: A}  \bigg] \\  \\ \sf \Rightarrow \quad  \frac{1}{ \frac{ {sin}^{2} \:  A +  {cos}^{2} \: A }{cos \: A \: sin \: A} }  \\  \\ \sf \Rightarrow \quad  \frac{1}{ \frac{1}{cos \: A \: sin \: A} }  \qquad \bigg[ \because \: {sin}^{2} \:  A +  {cos}^{2} \: A  = 1 \bigg] \\  \\ \sf \Rightarrow \quad cos \: A \: sin \: A \\  \\ \sf \Rightarrow \quad LHS = RHS \\  \\  \sf Hence, \: Proved \\  \\  \underline{ \sf Some \:  Formulae} \\  \\  \star \quad \sf 1 +  {tan}^{2}  \: A =  {sec}^{2}  \: A \\  \\  \star \quad \sf 1 +  {cot}^{2}  \: A =  {cosec}^{2}  \: A \\ \\ \star \quad \sf sin \: A = cos(90 - A ) \\ \\ \star \quad \sf sin \: A = \dfrac{1}{cosec \: A}

Answered by MaIeficent
16

Step-by-step explanation:

{\red{\underline{\underlune{\bold{To\:Prove:-}}}}}

  • \bf  \dfrac{1}{  \tan A  +  \cot A }  =  \cos A .\sin A

{\blue{\underline{\underlune{\bold{Proof:-}}}}}

As we know that

\bf   \tan A =  \dfrac{ \sin A}{ \cos A}

\bf   \cot a =  \dfrac{ \cos a}{ \sin a}

Let us prove by simplifying LHS and RHS separately

LHS =

\bf \leadsto \dfrac{1}{  \tan A  +  \cot A }

\bf \leadsto \dfrac{1}{   \dfrac{ \sin A }{ \cos A }  +  \dfrac{ \cos A }{ \sin A}  }

\bf \leadsto  \dfrac{1}{ \dfrac{ { \sin }^{2}A+  { \cos }^{2}A  }{ \cos A .\sin A }  }

Since; sin² A + cos² A = 1

\bf \leadsto  \dfrac{1}{ \dfrac{ 1 }{ \cos A .\sin A}  }

\bf \leadsto   \cos A . \sin A

= RHS

Therefore:-

\bf  \dfrac{1}{  \tan A  +  \cot A }  =  \cos A .\sin A

Hence Proved

Similar questions