Math, asked by boredaf1325, 4 months ago

prove that (1+tanA-secA) (1+tanA+secA) = 2tanA​

Answers

Answered by tannyamyr2005
1

Answer

L.H.S.=[secA+(tanA−1)]

[secA−(tanA−1)]−2tanA

=sec

2

A−(tanA−1)

2

−2tanA

sec

2

A−tan

2

A−1+2tanA−2tanA

=1−1=0=R.H.S.

Answered by IASgamer
1

Answer:

(1+tanA-secA)(1+tanA+secA)

Step-by-step explanation:

(1+sinA/cosA-1/cos)(1+sinA/cosA+1/cosA)

=(cos^2+cosA.sinA+cosA+sinA.cosA+sin^2+sinA-cosA-1)/cos^2

=2sinAcosA/cos^2

2tanA

Similar questions