Prove that (1+tanA-secA)x(1+tanA+secA)=2tanA
Answers
Answered by
3
Step-by-step explanation:
To prove : (1+tanA-secA)x(1+tanA+secA)=2tanA
take LHS
= (1+tanA-secA)x(1+tanA+secA)
= (1+tanA)² - sec²A
= 1+tan²A+2tanA - sec²A
= 2tanA + 1 - (sec²A-tan²A)
= 2tanA + 1 - 1
= 2tanA
= RHS
Hence proved
Similar questions