prove that (1+tanø+secø) (1+cotø-cosecø) =2
Answers
Answered by
29
Solution :-
We have to prove that,
(1+tanΦ+secΦ)(1+cotΦ-cosec Φ) = 2
Solving LHS,
(1+sinΦ/cosΦ+1/cosΦ)(1+cosΦ/sinΦ-1/sinΦ)
(cosΦ+sinΦ+1/cosΦ)(sinΦ+cosΦ-1/sinΦ)
(cosΦ+sinΦ+1)(sinΦ+cosΦ-1)/cosΦ.sinΦ
= (cosΦ + sinΦ)² - 1 / cosΦ * sinΦ
= cos²Φ+sin²Φ+ 2cosΦ*sinΦ - 1 /cosΦ.sinΦ
= 1 + 2cosΦsinΦ - 1 / cosΦsinΦ
= 2cosΦsinΦ/cosΦsinΦ
= 2
Hence, Proved
Reciprocal Relation and trigonometric identities :-
- sinΦ = 1/cose Φ , Cosec Φ = 1/sinΦ
- cosΦ = 1/secΦ , sec Φ = 1/cos Φ
- tanΦ = 1/cotΦ , cot Φ = 1/tan Φ
- tanΦ = sinΦ/cosΦ
- cot Φ = cosΦ/sinΦ
Identities :-
• Sin²Φ + cos²Φ = 1
• 1 + cot²Φ = cosec²Φ
• 1 + tan²Φ = sec²Φ
Answered by
31
Solution -
We have,
➝ (1 + tanθ + sinθ) (1 + cotθ - cosecθ) = 2
⠀
Taking L.H.S
⠀
⠀
⠀
⠀
⠀
⠀
⠀
⠀
⠀
⠀
➝ L.H.S = R.H.S
HENCE PROVED
━━━━━━━━━━━━━━━━━━━━━━
Similar questions
Hindi,
1 month ago
Math,
1 month ago
Physics,
2 months ago
English,
2 months ago
Social Sciences,
9 months ago