Math, asked by skullcandy2960, 7 months ago

Prove that (1+tanx)2 +(1+cotx)2=(secx+cosecx)2

Answers

Answered by vanshikapal451
2

this is proof of this questions.....

I hope you understand thiis question..

Attachments:
Answered by Anonymous
5

\huge\mathfrak{Answer:}

\large\underline{\sf{\blue{Given:}}}

  • We have been given a trigonometric expression
  • Containing some trigonometric functions

\large\underline{\sf{\blue{To \: Prove:}}}

\boxed{\sf{(1 + tan \: x)^2 + (1+cot \: x)^2 = (sec \: x + cosec \: x)^2}}

\large\underline{\sf{\blue{Proof:}}}

We have been given a trigonometric equation

\sf{}

\large\underline{\mathfrak{\red{According \: to \: the \: Question:}}}

Taking Left Hand Side of the Equation and proving it equal to Right Side

\sf{}

 \sf{(1 + tan \: x)^2 + (1+cot \: x)^2}

 \sf{1 + tan^2 \: x + 2 tan \: x + 1+cot^2 \: x + 2 cot \: x}

\sf{}

Using algebric identity in above equation

\boxed{\sf{\green{(a+b)^2 = a^2 + b^2 + 2ab}}}

\sf{}

\sf{1 + tan^2 \: x + 1 + cot^2 \: x + 2 tan \: x + 2 cot \: x}

\sf{sec^2 \: x + cosec^2 \: x + 2 ( tan \: x +  cot \: x)}

\sf{sec^2 \: x + cosec^2 \: x + 2 ( tan \: x +  cot \: x)}

\sf{}

Converting tangent and cotangent in terms of sine and cosine component

\sf{}

\sf{sec^2 \: x + cosec^2 \: x + 2 \left ( \dfrac{sin \: x}{cos \: x}+  \dfrac{cos \: x}{sin \: x } \right )}

\sf{sec^2 \: x + cosec^2 \: x + 2 \left ( \dfrac{sin^2 \: x + cos^2 \: x}{sin \: x \: cos \: x} \right )}

\sf{}

Using Trigonometric Equation below

\boxed{\sf{\green{sin^2x + cos^2x = 1}}}

\sf{}

\sf{sec^2 \: x + cosec^2 \: x + 2 \left ( \dfrac{1}{sin \: x \: cos \: x} \right )}

\sf{sec^2 \: x + cosec^2 \: x + 2 sec \: x \: cosec \: x }

\sf{sec^2 \: x + cosec^2 \: x + 2 sec \: x \: cosec \: x }

\sf{(sec \: x + cosec \: x)^2}

____________________________

\large{\purple{\underline{\underline{\mathtt{Trigonometric \: Identities :}}}}}

  • sin²x + cos²x = 1
  • sec²x - tan²x = 1
  • cosec²x - cot²x = 1
  • secx = 1 / cosx
  • cosecx = 1 / sinx
  • tanx = 1 / cot x

____________________________

Similar questions