prove that 1/v-1/4=1/f in convex lens
Answers
Explanation:
IS THE QUESTION CORRECT
?????~~~~~~~~~=≈
Correct question is 1/v -1/u =1/f
proved, 1/v -1/u =1/f
Proof :
Assumptions
1) lens is considered to be very thin with small apperture
2) object is considered to be point object.
Step 1 For refraction at AP1B
u1 = us , u2 = uL , R = +CC1 , U = -CO
V = Ci1
so,
uL/Ci1 + us/CO = (uL-us)/CC1
_____________(1)
Step 2 For refraction at AP2B
u1 = uL , u2 = us , R = -CC2 , U= -CC1
V = Ci2
so,
us/Ci2 + uL/Ci1 = (uL-us)/CC2
_____________(2)
Add (1)&(2)
us/CO + us/Ci2 = (uL - us)[ 1/CC1 +
1/CC2)]
For complete Lens
CO = -U , Ci2 = +V , CC1 = +R1 ,
CC1 = -R2
1/V - 1/U = (uL/us -1)(1/R1 - 1/R2)
Now if u = infinity then v = f
1/f = (uL/us -1)(1/R1 - 1/R2)
Hence, 1/V - 1/U = 1/f