Math, asked by vaishnavisingh90, 1 month ago

Prove that: 15/√10+√20+√40−√5−√80

= √10 + √5
please tell it's urgent​

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given

\rm :\longmapsto\:\dfrac{15}{ \sqrt{10}  +  \sqrt{20}  +  \sqrt{40}  -  \sqrt{5}  -  \sqrt{80} }

Let we first simply the square root terms in to their simplest form.

\rm :\longmapsto\: \sqrt{20} =  \sqrt{2 \times 2 \times 5} = 2 \sqrt{5}

\rm :\longmapsto\: \sqrt{40} =  \sqrt{2 \times 2 \times 2 \times 5} = 2\sqrt{10}

\rm :\longmapsto\: \sqrt{80} =  \sqrt{4 \times 4 \times 5} = 4 \sqrt{5}

So, now given expression is

\rm :\longmapsto\:\dfrac{15}{ \sqrt{10}  +  \sqrt{20}  +  \sqrt{40}  -  \sqrt{5}  -  \sqrt{80} }

reduced to

\rm \:  =  \:\:\dfrac{15}{ \sqrt{10}  +  2\sqrt{5}  +  2\sqrt{10}  -  \sqrt{5}  -  4\sqrt{5} }

\rm \:  =  \:\dfrac{15}{3 \sqrt{10}  - 3 \sqrt{5} }

\rm \:  =  \:\dfrac{15}{3 (\sqrt{10} - \sqrt{5}) }

\rm \:  =  \:\dfrac{5}{\sqrt{10} - \sqrt{5}}

On rationalizing the denominator, we get

\rm \:  =  \:\dfrac{5}{\sqrt{10} - \sqrt{5}}  \times  \dfrac{ \sqrt{10}  +  \sqrt{5} }{ \sqrt{10}  +  \sqrt{5} }

\rm \:  =  \:\dfrac{5( \sqrt{10}  +  \sqrt{5})}{ {( \sqrt{10} )}^{2}  -  {( \sqrt{5} )}^{2} }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}   \bigg \}}

\rm \:  =  \:\dfrac{5( \sqrt{10}  +  \sqrt{5})}{ 10 - 5}

\rm \:  =  \:\dfrac{5( \sqrt{10}  +  \sqrt{5})}{5}

\rm \:  =  \: \sqrt{10} +  \sqrt{5}

Hence,

\bf :\longmapsto\:\dfrac{15}{ \sqrt{10}  +  \sqrt{20}  +  \sqrt{40}  -  \sqrt{5}  -  \sqrt{80} }

\bf \:  =  \: \sqrt{10} +  \sqrt{5}

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions