Prove that: 16.cos24.cos48.cos96.cos192=1
Answers
Answered by
2
Answer:
Using the identity 2cosAcosB=cos(A+B)+cos(A−B) gives
2cos24∘cos96∘=cos120∘+cos72∘=sin18∘−12,
2cos48∘cos192∘=cos240∘+cos144∘=−cos36∘−12.
Therefore
16cos24∘cos48∘cos96∘cos192∘=(1+2cos36∘)(1–2sin18∘)
=1+2cos36∘−2sin18∘−4cos36∘sin18∘…(1)
From
sin72∘⋅sin36∘=(2sin36∘cos36∘)(2sin18∘cos18∘)
and
sin72∘=cos18∘
we get 4sin18∘cos36∘=1…(2)
Using the identity 2cosAsinB=sin(A+B)−sin(A−B) with A=36∘ and B=18∘ gives
2cos36∘sin18∘=sin54∘−sin18∘=cos36∘−sin18∘…(3)
Putting together eqns. (1), (2), (3), we get
16cos24∘cos48∘cos96∘cos192∘=1. ■
Step-by-step explanation:
Similar questions