Math, asked by Anonymous, 11 months ago

prove that ☺️☺️☺️☺️☺️☺️☺️​

Attachments:

Answers

Answered by noothankt
6

Answer:

here's your answer mate

Step-by-step explanation:

please mark it as brainliest

Attachments:
Answered by Anonymous
6

Proof :

 \sf \frac{1}{ \sec A - 1}  +  \frac{1}{ \sec A + 1}   \\

 \sf =  \frac{ \sec A - 1 + sec A + 1}{(\sec A - 1)( \sec A + 1)}  \\

  \sf=  \frac{2 \sec A}{sec {}^{2}  A - 1}

  \sf=  \frac{2 \sec A }{ \tan {}^{2}  A}  \\

 \sf =  \frac{2   \times \frac{1}{ \cos A} }{ \frac{ {\sin}^{2} A}{{ \cos}^{2} A} }  \\

 \sf =  \frac{2 \cos A}{ \sin {}^{2}  A}   \\

 \sf =  \frac{2 \cos A}{ \sin A}  \times  \frac{1}{ \sin A}  \\

  \sf =  \frac{2}{ \cot A  \csc A}  \\

  \bold{Hence \: Proved}

Formula used :

  • tan²A + 1 = sec² A
  • sinA = 1/cosecA
  • cosA = 1/sinA
  • tanA = sinA/cosA
  • cotA = cosA/sinA

Similar questions