prove that ................
Attachments:
Answers
Answered by
1
Taking LHS
(Tan^3∅)/(1+tan^2∅) +(cot^3∅)/(1+cot^2∅)
=>(Tan^3∅)/(1+Tan^2∅) +(cot^3∅)/(1+1/tan^2∅)
=>(Tan^3∅)/(1+tan^2∅) +(tan^2∅cot^3∅)/(tan^2∅+1)
now,1+Tan^2∅ is denominator in both term
=>(Tan^3∅+Tan^2∅/Tan^3∅)/(Tan^2∅+1)
=>(Tan^3∅+1/Tan∅)/(sec^2∅)
converting it to sin and cos term
=>(sin^3∅/cos^3∅ +cos∅/sin∅)/(sec^2∅)
=>(Sin^4∅+ cos^4∅)/(cos^3∅sin∅×sec^2∅)
=>(Sin^4∅+cos^4∅)/(cos∅sin∅)
=>{(sin^2∅)^2+ (cos^2∅)^2+2sin^2∅cos^2∅-2sin^2∅cos^2∅)}/(cos∅sin∅)
=>{(sin^∅+cos^2∅)^2-2sin^2∅cos^2∅}/(cos∅sin∅)
=>(1-2sin^2∅cos^2∅)/(cos∅sin∅)
=>sec∅cosec∅-2sin∅cos∅=RHS
Hence proved
{hope it helps}
Similar questions