Math, asked by priyankasaini9362, 4 months ago

prove that 1upon1+root 2+1upon root 2+root 3++1upon root 3+root 4+1upon root 4+root 5+1upon root5+root 6+1upon root 6+root 7+1upon root7+root 8+1upon root9+root 3 =2​

Answers

Answered by VishnuPriya2801
54

Answer:-

To Prove:

 \large \sf \:  \dfrac{1}{ \sqrt{1} +  \sqrt{2}  }  +  \dfrac{1}{ \sqrt{2} +  \sqrt{3}  }  +  \dfrac{1}{ \sqrt{3}  +  \sqrt{4} }  +  \dfrac{1}{ \sqrt{4}  +  \sqrt{5} }  +  \dfrac{1}{ \sqrt{5} +  \sqrt{6}  }  +  \dfrac{1}{ \sqrt{6} +  \sqrt{7}  }  +  \dfrac{1}{ \sqrt{7} +  \sqrt{8}  }  +  \dfrac{1}{ \sqrt{8}  +  \sqrt{9} }  = 2

By rationalising the denominator a we get,

 \implies \sf\:  \dfrac{1}{ \sqrt{1} +  \sqrt{2}  } \times  \dfrac{ \sqrt{1}  -  \sqrt{2} }{ \sqrt{1}  -   \sqrt{2} }   +  \dfrac{1}{ \sqrt{2} +  \sqrt{3}  }  \times  \dfrac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{2} -  \sqrt{3}  }  +  \dfrac{1}{ \sqrt{3}  +  \sqrt{4} }   \times  \frac{ \sqrt{3} -  \sqrt{4}  }{ \sqrt{3} -  \sqrt{4}  } +  \dfrac{1}{ \sqrt{4}  +  \sqrt{5} }   \times  \frac{ \sqrt{4}  -  \sqrt{5} }{ \sqrt{4} -  \sqrt{5}  } +  \dfrac{1}{ \sqrt{5} +  \sqrt{6}  } \times   \frac{ \sqrt{5}  -  \sqrt{6} }{ \sqrt{5}  -  \sqrt{6} }   +  \dfrac{1}{ \sqrt{6} +  \sqrt{7}  }\times \dfrac{\sqrt{6} - \sqrt{7}}{  \sqrt{6}-\sqrt{7} }+  \dfrac{1}{ \sqrt{7} +  \sqrt{8}  }  \times  \frac{ \sqrt{7}  -  \sqrt{8} }{ \sqrt{7}  -  \sqrt{8} }  +  \dfrac{1}{ \sqrt{8}  +  \sqrt{9} } \times      \frac{ \sqrt{8}  -  \sqrt{9} }{\sqrt{8} - \sqrt{9}}    = 2 \\

Using the identity (a + b)(a - b) = - we get,

 \implies \sf \:  \dfrac{ \sqrt{1} -  \sqrt{2}  }{ (\sqrt{1} )^{2}   -  ( \sqrt{2}) ^{2}   }  +  \dfrac{ \sqrt{2} -   \sqrt{3} }{ (\sqrt{2}) ^{2}  - (  \sqrt{3}) ^{2}   }  +  \dfrac{ \sqrt{3}  -  \sqrt{4} }{( \sqrt{3})   ^{2}  -   (\sqrt{4}) ^{2}  }  +  \dfrac{ \sqrt{4} -  \sqrt{5}  }{ (\sqrt{4} )  ^{2}  -  ( \sqrt{5})  ^{2} }  +  \dfrac{ \sqrt{5} -  \sqrt{6}  }{ (\sqrt{5} ) ^{2}  -  (\sqrt{6} ) ^{2}  }  +  \dfrac{ \sqrt{6} -  \sqrt{7}  }{ (\sqrt{6})  ^{2}  - ( \sqrt{7}  ) ^{2} }  +  \dfrac{ \sqrt{7}  -  \sqrt{8} }{ (\sqrt{7}) ^{2}   -  (\sqrt{8} ) ^{2}  }  +  \dfrac{ \sqrt{8}  -  \sqrt{9} }{ (\sqrt{8})  ^{2}  +  (\sqrt{9} ) ^{2} }  = 2 \\  \\  \\ \implies \sf \:  \frac{ \sqrt{1} -  \sqrt{2}  }{1 - 2}  +  \frac{ \sqrt{2} -  \sqrt{3}  }{2 - 3}  +  \frac{ \sqrt{3}  -  \sqrt{4} }{3 - 4}  +  \frac{ \sqrt{4}  -  \sqrt{5} }{4 - 5}  +  \frac{ \sqrt{5} -  \sqrt{6}  }{5 - 6}  +  \frac{ \sqrt{6}  -  \sqrt{7} }{6 - 7}  +  \frac{ \sqrt{7}  -  \sqrt{8} }{7 - 8}  +  \frac{ \sqrt{8}  -  \sqrt{9} }{8 - 9}  = 2 \\  \\  \\ \implies \sf \: \frac{ \sqrt{1} -  \sqrt{2}  }{- 1}  +  \frac{ \sqrt{2} -  \sqrt{3}  }{ - 1}  +  \frac{ \sqrt{3}  -  \sqrt{4} }{ - 1}  +  \frac{ \sqrt{4}  -  \sqrt{5} }{- 1}  +  \frac{ \sqrt{5} -  \sqrt{6}  }{ - 1}  +  \frac{ \sqrt{6}  -  \sqrt{7} }{ - 1}  +  \frac{ \sqrt{7}  -  \sqrt{8} }{ - 1}  +  \frac{ \sqrt{8}  -  \sqrt{9} }{ - 1}  = 2

Now,

By Multiplying the numerators with ( - ) we get,

 \implies \sf \:   \cancel{ \sqrt{2} } -  \sqrt{1} +   \cancel{\sqrt{3}}   -   \cancel{\sqrt{2} } +  \cancel{ \sqrt{4}}  -  \cancel{ \sqrt{3}}  +  \cancel{ \sqrt{5}}  -  \cancel{ \sqrt{4}}  +   \cancel{\sqrt{6}}  -   \cancel{\sqrt{5}}  + \cancel{  \sqrt{7}  }-   \cancel{\sqrt{6}}  + \cancel{  \sqrt{8}  }-   \cancel{\sqrt{7} } +  \sqrt{9}  - \cancel{  \sqrt{8}}  = 2 \\  \\  \\ \implies \sf \:  -  \sqrt{1}  +  \sqrt{9}  = 2 \\  \\  \\ \implies \sf \: 3 - 1 = 2 \\  \\  \\ \implies \sf \: 2 = 2

Hence , Proved.


Glorious31: Nice !
VishnuPriya2801: Thank you ! :)
Answered by Rubellite
74

\huge{\underline{\underline{\sf{\pink{Required\:Answer:}}}}}

Here in this question, we are asked to prove this equation,

 \large \sf \: \dfrac{1}{ \sqrt{1} +  \sqrt{2}  }  +  \dfrac{1}{ \sqrt{2} +  \sqrt{3}  }  +  \dfrac{1}{ \sqrt{3}  +  \sqrt{4} }  +  \dfrac{1}{ \sqrt{4}  +  \sqrt{5} }  +  \dfrac{1}{ \sqrt{5} +  \sqrt{6}  }  +  \dfrac{1}{ \sqrt{6} +  \sqrt{7}  }  +  \dfrac{1}{ \sqrt{7} +  \sqrt{8}  }  +  \dfrac{1}{ \sqrt{8}  +  \sqrt{9} }  = 2

To do so, we need to

  • Rationalize the denominator of each term.

 \implies \sf \: \dfrac{1}{ \sqrt{1} +  \sqrt{2}  } \times  \dfrac{ \sqrt{1}  -  \sqrt{2} }{ \sqrt{1}  -   \sqrt{2} }   +  \dfrac{1}{ \sqrt{2} +  \sqrt{3}  }  \times  \dfrac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{2} -  \sqrt{3}  }  +  \dfrac{1}{ \sqrt{3}  +  \sqrt{4} }   \times  \dfrac{ \sqrt{3} -  \sqrt{4}  }{ \sqrt{3} -  \sqrt{4}  } +  \dfrac{1}{ \sqrt{4}  +  \sqrt{5} }   \times  \dfrac{ \sqrt{4}  -  \sqrt{5} }{ \sqrt{4} -  \sqrt{5}  } +  \dfrac{1}{ \sqrt{5} +  \sqrt{6}  } \times   \dfrac{ \sqrt{5}  -  \sqrt{6} }{ \sqrt{5}  -  \sqrt{6} }   +  \dfrac{1}{ \sqrt{6} +  \sqrt{7}  }  +  \dfrac{1}{ \sqrt{7} +  \sqrt{8}  }  \times  \dfrac{ \sqrt{7}  -  \sqrt{8} }{ \sqrt{7}  -  \sqrt{8} }  +  \dfrac{1}{ \sqrt{8}  +  \sqrt{9} } \times   \times   \dfrac{ \sqrt{8}  -  \sqrt{9} }{ \sqrt{8} - \sqrt{9}}    = 2

  • Here, we will use the algebraic identity \large{\boxed{\sf{\orange{a^{2}-b^{2} = (a+b)(a-b)}}}}

 \implies \sf \: \dfrac{ \sqrt{1} -  \sqrt{2}  }{ (\sqrt{1} )^{2}   -  ( \sqrt{2}) ^{2}   }  +  \dfrac{ \sqrt{2} -   \sqrt{3} }{ (\sqrt{2}) ^{2}  - (  \sqrt{3}) ^{2}   }  +  \dfrac{ \sqrt{3}  -  \sqrt{4} }{( \sqrt{3})   ^{2}  -   (\sqrt{4}) ^{2}  }  +  \dfrac{ \sqrt{4} -  \sqrt{5}  }{ (\sqrt{4} )  ^{2}  -  ( \sqrt{5})  ^{2} }  +  \dfrac{ \sqrt{5} -  \sqrt{6}  }{ (\sqrt{5} ) ^{2}  -  (\sqrt{6} ) ^{2}  }  +  \dfrac{ \sqrt{6} -  \sqrt{7}  }{ (\sqrt{6})  ^{2}  - ( \sqrt{7}  ) ^{2} }  +  \dfrac{ \sqrt{7}  -  \sqrt{8} }{ (\sqrt{7}) ^{2}   -  (\sqrt{8} ) ^{2}  }  +  \dfrac{ \sqrt{8}  -  \sqrt{9} }{ (\sqrt{8})  ^{2}  +  (\sqrt{9} ) ^{2} }  = 2 \\  \\  \\ \implies \sf \:  \dfrac{ \sqrt{1} -  \sqrt{2}  }{1 - 2}  +  \dfrac{ \sqrt{2} -  \sqrt{3}  }{2 - 3}  +  \dfrac{ \sqrt{3}  -  \sqrt{4} }{3 - 4}  +  \dfrac{ \sqrt{4}  -  \sqrt{5} }{4 - 5}  +  \dfrac{ \sqrt{5} -  \sqrt{6}  }{5 - 6}  +  \dfrac{ \sqrt{6}  -  \sqrt{7} }{6 - 7}  +  \dfrac{ \sqrt{7}  -  \sqrt{8} }{7 - 8}  +  \dfrac{ \sqrt{8}  -  \sqrt{9} }{8 - 9}  = 2 \\  \\  \\ \implies \sf \: \dfrac{ \sqrt{1} -  \sqrt{2}  }{- 1}  +  \frac{ \sqrt{2} -  \sqrt{3}  }{ - 1}  +  \dfrac{ \sqrt{3}  -  \sqrt{4} }{ - 1}  +  \dfrac{ \sqrt{4}  -  \sqrt{5} }{- 1}  +  \dfrac{ \sqrt{5} -  \sqrt{6}  }{ - 1}  +  \dfrac{ \sqrt{6}  -  \sqrt{7} }{ - 1}  +  \dfrac{ \sqrt{7}  -  \sqrt{8} }{ - 1}  +  \dfrac{ \sqrt{8}  -  \sqrt{9} }{ - 1}  = 2

After that,

  • Cancel the terms and simplify the equation.

 \implies \sf \: \cancel{ \sqrt{2} } -  \sqrt{1} +   \cancel{\sqrt{3}}   -   \cancel{\sqrt{2} } +  \cancel{ \sqrt{4}}  -  \cancel{ \sqrt{3}}  +  \cancel{ \sqrt{5}}  -  \cancel{ \sqrt{4}}  +   \cancel{\sqrt{6}}  -   \cancel{\sqrt{5}}  + \cancel{  \sqrt{7}  }-   \cancel{\sqrt{6}}  + \cancel{  \sqrt{8}  }-   \cancel{\sqrt{7} } +  \sqrt{9}  -  \sqrt{8}  = 2 \\  \\  \\ \implies \sf \:  -  \sqrt{1}  +  \sqrt{9}  = 2 \\  \\  \\ \implies \sf \: 3 - 1 = 2 \\  \\  \\ \implies \sf \: 2 = 2

Hence, Proved!

And we are done! :D

__________________________


Glorious31: Neat work !
VishnuPriya2801: Nice :)
Similar questions