Math, asked by triggerAVS6296, 11 months ago

Prove that 2^1/4.4^1/8.8^1/16.16^1/32.............is equal to 2

Answers

Answered by mindfulmaisel
0

$\text{P} = 2^\frac{1}{4}  \text{x} 4^\frac{1}{8} \text{x}8^\frac{1}{16}\text{x}16^\frac{1}{32}...............\text{infinite} = 2 is Proved.

Step-by-step explanation:

To Prove :

$\text{P} = 2^\frac{1}{4}  \text{x} 4^\frac{1}{8} \text{x}8^\frac{1}{16}\text{x}16^\frac{1}{32}...............\text{infinite} = 2

P = 2^({\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{4}{64}.....)  }

P =$2^\text{s} ...........(1)

where S = {\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{5}{64}..... } (2)

$\text{S}\text{x}\frac{1}{2} = \frac{1}{8} +\frac{2}{16} + \frac{3}{32} +\frac{4}{64} ................(3)

subtracting equation (3) from (2)

$\frac{\text{S}}{2} =\frac{1}{4} +\frac{1}{8} +\frac{1}{32} +\frac{1}{64} .........

$\frac{\text{S}}{2} = \frac{\text{a}}{(1-\text{r})}

   = $\frac{1}{4} \text{x}\frac{2}{1} = \frac{1}{2}

∴ S = 1

Substitute S = 1 in equation (1)

$\text{P} = 2^{1} = 2

Hence proved.

To Learn More....

1. Prove a^2+1/a^2=a^3+1/a^3=a^4+1/a^4of a+1/a=2

https://brainly.in/question/16161371

2.If x square - 1 is a factor of ax power 4 + bx cube + cx square + dx + e , show that a + c + e = 0 , b +d = 0

https://brainly.in/question/4476265

Similar questions