Prove that (✓2, ✓2),(-✓2,-✓2) and (-✓6,✓6) are the vertices of an equilateral triangle
Answers
☯ Explanation,
Let, A(√2 , √2) , B(-√2 , -√2) & C(-√6 , √6).
Using distance formula,
d = √(x2 - x1)² + (y2 - y1)²
Case (I) :- A(√2 , √2) , B(-√2 , -√2)
⇒ AB = √(-√2 - √2)² + (-√2 - √2)²
⇒ AB = √2(-√2 - √2)²
⇒ AB = √2(2√2)²
⇒ AB = √2 × 8
⇒ AB = √16 unitsㅤㅤㅤㅤeqn. (1)
Case (II) :- B(-√2 , -√2) & C(-√6 , √6)
⇒ BC = (-√6 + √2)² + (√6 + √2)²
⇒ BC = √(√2 - √6)² + 6 + 2√12 + 2
⇒ BC = √6 - 2√12 + 2 + 8 + 2√12
⇒ BC = √6 + 2 + 8
⇒ BC = √16 unitsㅤㅤㅤeqn.(2)
Case (III) :- A(√2 , √2) & C(-√6 , √6)
⇒ AC = √(-√6 - √2)² + (√6 - √2)²
⇒ AC = √6 + 2√12 + 2 + 6 - 2√12 + 2
⇒ AC = √6 + 2 + 6 + 2
⇒ AC = √16 units ㅤㅤㅤㅤeqn.(3)
From eqn. (1) , (2) & (3), We get ;
⇒ AB = BC = AC
.°. ΔABC is an equilateral triangle.
☯ Hence,
(√2 , √2) , (-√2 , -√2) & (-√6 , √6) are the vertices of an equilateral triangle.
There are three points (√2 , √2), (-√2 , -√2) and (-√6 , √6).
Let
- A = (√2 , √2)
- B = (-√2 , -√2)
- C = (-√6 , √6)
If AB = BC = AC, then it will be an equilateral triangle.
Formula used :
- Distance = √[(x2 - x1)² + (y2 - y1)²]
As we know that, equilateral triangle has all sides equal.
In first case :
➟ AB = √[(-√2 - √2)² + (-√2 - √2)²]
➟ AB = √[(-2√2)² + (-2√2)²]
➟ AB = √[8 + 8]
➟ AB = √16
➟ AB = 4 units ...i)
In second case :
➟ BC = √[(-√6² + √2)² + (√6 + √2)²]
➟ BC = √[(-√6)² + (√2)² - 2.√6.√2 + (√6)² + (√2)² + 2.√6.√2]
➟ BC = √[6 + 2 - 2√12 + 6 + 2 + 2√12]
➟ BC = √[6 + 2 + 6 + 2 ]
➟ BC = √[8 + 8]
➟ BC = √16
➟ BC = 4 units ...ii)
In third case :
➟ AC = √[(-√6 - √2)² + (√6 - √2)²]
➟ AC = √[(-√6)² + (√2)² - 2.(-√6) .(√2) + (√6)² + (√2)² - 2.√6.√2]
➟ AC = √[ 6 + 2 + 2√12 + 6 + 2 - 2√12]
➟ AC = √[6 + 2 + 6 + 2]
➟ AC = √[8 + 8]
➟ AC = √16
➟ AC = 4 units ...iii)
From i), ii) and ii) -
- AB = BC = AC
Therefore, (√2 , √2) , (-√2 , -√2) and (-√6 , √6) are the vertices of an equilateral triangle.