Math, asked by sbsjbsjbjss, 1 year ago

prove that √(2+√(2+√(2+2cos8∅)=2cos∅​

Answers

Answered by sahildhande987
3

Here is the answer mate

Attachments:
Answered by Anonymous
14

SOLUTION

L.H.S of the given equation is:

 =  >  \sqrt{2  + \sqrt{2 +  \sqrt{2 +  \sqrt{2cos8 \theta} }  } }  \\  \\  =  >  \sqrt{2 +  \sqrt{2 +  \sqrt{2(1 + cos8 \theta)} } }   \\ \\  =  >  \sqrt{2 +  \sqrt{2  +  \sqrt{2(1 + 2cos {}^{2}4 \theta - 1) } } }  \:  \:  \:  \:  \:  \:  \:  \:  \: [Since \: cos2A = 2cos {}^{2} A  - 1]\\  \\  =  >  \sqrt{2 +  \sqrt{2 +  \sqrt{2.2cos {}^{2} 4 \theta} } }  \\  \\  =  >  \sqrt{2 +  \sqrt{2 + 2cos4 \theta} }  \\  \\  =  >  \sqrt{2 +  \sqrt{2(1 + cos4 \theta)} }  \\  \\  =  >  \sqrt{2 +  \sqrt{2(1 + 2cos {}^{2}2 \theta - 1) } }  \\  \\  =  >  \sqrt{2 +  \sqrt{2.2cos {}^{2}2 \theta } }  \\  \\  =  >  \sqrt{2 + 2cos2 \theta}  \\  \\  =  >  \sqrt{2(1 + cos2 \theta)}  \\  =  >  \sqrt{2(1 + 2cos {}^{2}  \theta  - 1)}  \\  =  >  \sqrt{2.2 {cos}^{2}  \theta}  = 2cos \theta

R.H.S

Hope it helps ☺️

Similar questions