Math, asked by manishr8584, 7 months ago

Prove that √2 + √2 + 2cos4x = 2cosx , 0 < x < π/ 4

Answers

Answered by Anonymous
4

Step-by-step explanation:

Answer:

Thus, the result proves that the

\sqrt { 2 + \sqrt { 2 + 2 \cos 4 A } } = 2 \cos A

2+

2+2cos4A

=2cosA

To prove:

\sqrt { 2 + \sqrt { 2 + 2 \cos 4 A } } = 2 \cos A

2+

2+2cos4A

=2cosA

Solution:

Given that

\sqrt { 2 + \sqrt { 2 + 2 \cos 4 A } }

2+

2+2cos4A

We already knew that the value of \cos 2Acos2A using the double angle formula will be,

\cos 2 A = 2 \cos ^ { 2 } A - 1cos2A=2cos

2

A−1

Here 2A is also known as multiple angles.

Similarly,

\cos 4 A = 2 \cos ^ { 2 } ( 2 A ) - 1cos4A=2cos

2

(2A)−1

Substituting this value in the given term, we get,

\sqrt { 2 + \sqrt { 2 + 2 \cos 4 \mathrm { A } } }

2+

2+2cos4A

\begin{gathered}\begin{array} { c } { = \sqrt { 2 + \sqrt { 2 + 2 \cos ( 4 A ) } } } \\\\ { = \sqrt { 2 + \sqrt { 2 + 2 \left( 2 \cos ^ { 2 } 2 A - 1 \right) } } } \end{array}\\\end{gathered}

=

2+

2+2cos(4A)

=

2+

2+2(2cos

2

2A−1)

\begin{gathered}\begin{array} { c } { = \sqrt { 2 + \sqrt { 2 + 4 \cos ^ { 2 } 2 A - 2 } } } \\\\ { = \sqrt { 2 + \sqrt { 4 \cos ^ { 2 } 2 A } } } \\\\ { = \sqrt { 2 + 2 \cos 2 A } } \end{array}\end{gathered}

=

2+

2+4cos

2

2A−2

=

2+

4cos

2

2A

=

2+2cos2A

\begin{gathered}\begin{aligned} = & \sqrt { 2 + 2 \left( 2 \cos ^ { 2 } A - 1 \right) } \\\\ = & \sqrt { 2 + 4 \cos ^ { 2 } A - 2 } \\\\ & = \sqrt { 4 \cos ^ { 2 } A } \\\\ & = 2 \cos A \end{aligned}\end{gathered}

=

=

2+2(2cos

2

A−1)

2+4cos

2

A−2

=

4cos

2

A

=2cosA

Thus,

\sqrt { 2 + \sqrt { 2 + 2 \cos 4 A } } = 2 \cos A

2+

2+2cos4A

=2cosA

Hence proved.

please mark me at brainlist

Similar questions