Math, asked by soniahaider, 8 months ago

prove that (2+2 sec theta)(1-sec theta)/(2+2cosec theta)(1-cosec theta)=tan 4 theta

Answers

Answered by tanish5176
1

Step-by-step explanation:

(2+2sec∅)(1-sec∅)/(2+2cosec∅)(1-cosec∅)

= 2(1+sec∅)(1-sec∅)/2(1+cosec∅)(1-cosec∅)

=2(1-sec²∅)/2(1-cosec²∅)

=-tan²∅/-cot²∅

=tan²∅.tan²∅

=tan⁴∅

Hence Proved.

Please mark my answer as branliest.

Answered by rinayjainsl
0

Answer:

It is proved that \frac{(2+2sec\theta)(1-sec\theta)}{(2+2cosec\theta)(1-cosec\theta)}=tan^{4}\theta

Step-by-step explanation:

The given trigonometric expression is

\frac{(2+2sec\theta)(1-sec\theta)}{(2+2cosec\theta)(1-cosec\theta)}

We are required to prove that the value of this expression is equal to tan^{4}\theta

We shall do it in the following way as shown below.

\frac{(2+2sec\theta)(1-sec\theta)}{(2+2cosec\theta)(1-cosec\theta)}\\=\frac{2(1+sec\theta)(1-sec\theta)}{2(1+cosec\theta)(1-cosec\theta)}\\=\frac{1-sec^{2}\theta}{1-cosec^{2}\theta}

To solve it further we use the trigonometric identities as shown below

1+tan^{2}\theta=sec^{2}\theta= > 1-sec^{2}\theta=-tan^{2}\theta\\1+cot^{2}\theta=cosec^{2}\theta= > 1-cosec^{2}\theta=-cot^{2}\theta

Substituting these values in above expression,we get

=\frac{-tan^{2}\theta}{-cot^{2}\theta} =tan^{4}\theta

Hence it is proved that,

\frac{(2+2sec\theta)(1-sec\theta)}{(2+2cosec\theta)(1-cosec\theta)}=tan^{4}\theta

#SPJ2

Similar questions