Math, asked by venkateswararao43, 11 months ago

prove that 2√3+3√5is an irrational number​

Answers

Answered by ayushkumar25july
1

Answer:

Step-by-step explanation:

Let us suppose that 2√3+√5 is rational.

\begin{lgathered}Let\: 2\sqrt{3}+\sqrt{5}=\frac{a}{b},\\where\:a,b\:are\: integers\\ \:and\:b≠0\end{lgathered}

Let2

3

+ Step-by-step explanation:

Let us suppose that 2√3+√5 is rational.

\begin{lgathered}Let\: 2\sqrt{3}+\sqrt{5}=\frac{a}{b},\\where\:a,b\:are\: integers\\ \:and\:b≠0\end{lgathered}

Let2

3

+

5

=

b

a

,

wherea,bareintegers

andb≠0

Therefore, \:2\sqrt{3}=\frac{a}{b}-\sqrt{5}.Therefore,2

3

=

b

a

5

.

Squaring on both sides, we get

12=\frac{a^{2}}{b^{2}}+5-2\times \frac{a}{b}\times \sqrt{5}12=

b

2

a

2

+5−2×

b

a

×

5

Rearranging

\implies \frac{2a}{b}\sqrt{5}=\frac{a^{2}}{b^{2}}+5-12⟹

b

2a

5

=

b

2

a

2

+5−12

\implies \frac{2a}{b}\sqrt{5}=\frac{a^{2}}{b^{2}}-7⟹

b

2a

5

=

b

2

a

2

−7

\implies \frac{2a}{b}\sqrt{5}=\frac{a^{2}-7b^{2}}{b^{2}}⟹

b

2a

5

=

b

2

a

2

−7b

2

\implies\sqrt{5}=\frac{a^{2}-7b^{2}}{b^{2}}\times \frac{b}{2a}⟹

5

=

b

2

a

2

−7b

2

×

2a

b

After cancellation, we get

\implies\sqrt{5}=\frac{a^{2}-7b^{2}}{2ab}⟹

5

=

2ab

a

2

−7b

2

Since , a ,b are integers , \frac{a^{2}-7b^{2}}{2ab}

2ab

a

2

−7b

2

is rational,and so √5 is rational.

This contradicts the fact that √5 is irrational.

Hence , 2√3+√5 is irrational

5

=

b

a

,

wherea,bareintegers

andb≠0

Therefore, \:2\sqrt{3}=\frac{a}{b}-\sqrt{5}.Therefore,2

3

=

b

a

5

.

Squaring on both sides, we get

12=\frac{a^{2}}{b^{2}}+5-2\times \frac{a}{b}\times \sqrt{5}12=

b

2

a

2

+5−2×

b

a

×

5

Rearranging

\implies \frac{2a}{b}\sqrt{5}=\frac{a^{2}}{b^{2}}+5-12⟹

b

2a

5

=

b

2

a

2

+5−12

\implies \frac{2a}{b}\sqrt{5}=\frac{a^{2}}{b^{2}}-7⟹

b

2a

5

=

b

2

a

2

−7

\implies \frac{2a}{b}\sqrt{5}=\frac{a^{2}-7b^{2}}{b^{2}}⟹

b

2a

5

=

b

2

a

2

−7b

2

\implies\sqrt{5}=\frac{a^{2}-7b^{2}}{b^{2}}\times \frac{b}{2a}⟹

5

=

b

2

a

2

−7b

2

×

2a

b

After cancellation, we get

\implies\sqrt{5}=\frac{a^{2}-7b^{2}}{2ab}⟹

5

=

2ab

a

2

−7b

2

Since , a ,b are integers , \frac{a^{2}-7b^{2}}{2ab}

2ab

a

2

−7b

2

is rational,and so √5 is rational.

This contradicts the fact that √5 is irrational.

Hence , 2√3+√5 is irrational

Similar questions