Math, asked by ayeshatasleem40, 1 day ago

Prove that 2-3√5 is an irrational number.​

Answers

Answered by bikshampuram1988
0

Step-by-step explanation:

\bold\pink{given}⇒ 2 -  \sqrt[3]{5}  \\ \bold\red{to \: prove} ⇒it \: is \: an \:  \\ irrational \: number.. \\  let\: number \:  = x \\ ⇒x = 2 -  \sqrt[3]{5} \\  ⇒\sqrt[3]{5}  = 2 - x \\  ⇒ \sqrt{5}  =  \frac{2 - x}{3}  \\ \bold{since \:  x \:   and \:   2 - x \: is \:   rational \:  } \\ \bold{and \: hence \:  \frac{2 - x}{3} } \: is \: also \\  \: rational \: number.. \\ \bold{ \sqrt{5} } \: is \: rational \: number.. \\ \bold{hence \: 2 -  \sqrt[3]{5} \: must \: be \: an \: irrational \: number.. }

Similar questions