Prove that 2+3√5 is irrational
Answers
Answered by
3
Step-by-step explanation:
let , 2+3√5 be a rational number i.e. p/q
=> 2+3√5 is an irrational no.
Answered by
0
let , 2+3√5 be a rational number i.e. p/q
\begin{gathered}2 + 3 \sqrt{5} = \frac{x}{y} \\ = > \frac{x}{y} - 3 \sqrt{5} = 2 \\ squaring \: both \: side \\ ({\frac{x}{y} - 3 \sqrt{5} })^{2} = {2}^{2} \\ ( { \frac{x}{y} })^{2} + 45 - 6 \sqrt{5} \frac{x}{y} = 4 \\ = > { (\frac{x}{y} )}^{2} + 45 - 4 = 6 \sqrt{5} \frac{x}{y} \\ = > ({ (\frac{x}{y} )}^{2} + 41) \frac{y}{6x} = \sqrt{5} \\ w e\: know \: \sqrt{5} is \: an \: irrational \: no.\end{gathered}
2+3
5
=
y
x
=>
y
x
−3
5
=2
squaring both side
(
y
x
−3
5
)
2
=2
2
(
y
x
)
2
+45−6
5
y
x
=4
=>(
y
x
)
2
+45−4=6
5
y
x
=>((
y
x
)
2
+41)
6x
y
=
5
we know
5
is an irrational no.
=> 2+3√5 is an irrational no.
Hope it helps uu..
Similar questions