Prove that
2^30+2^29+2^28/2^31+2^30-2^29=7/10
Answers
Answered by
703
[tex]\text{LHS} \\ \\
=\frac{2^{30}+2^{29}+2^{28}}{2^{31}+2^{30}-2^{29}}\\ \\
=\frac{2^{28+2}+2^{28+1}+2^{28}}{2^{29+2}+2^{29+1}-2^{29}}\\ \\
\text{Applying }a^{m+n} =a^m\times a^n:\\ \\
=\frac{2^{28}\times2^2+2^{28}\times2^1+2^{28}}{2^{29}\times2^2+2^{29}\times2^1-2^{29}}\\ \\
\text{Factor out }x^{28} \text{from numerator and }x^{29} \text{ from denominator:}\\ \\
= \frac{2^{28}(2^2+2^1+1)}{2^{29}(2^2+2^1-1)}\\ \\
\text{Simplify further:}\\ \\
= \frac{4+2+1}{2(4+2-1)} \\ \\
= \frac{7}{2(5)} \\ \\
[/tex]
[tex]= \frac{7}{10}\\ \\ \text{=RHS (Proved)} [/tex]
[tex]= \frac{7}{10}\\ \\ \text{=RHS (Proved)} [/tex]
Answered by
4
Answer:
Required to prove,
Recall the concepts:
From the law of exponents
--------------(1)
----------------(2)
Solution:
LHS =
Taking out from the terms of the numerator and from the terms of the denominator we get
= =
By applying equation (1) we get,
=
Applying equation (2) we get
= = = RHS
∴
Hence proved
#SPJ2
Similar questions