Prove that
(2∧30+2∧29+2∧28)÷(2∧31+2∧30-2∧29)=7/10
Answers
Answered by
8
(2^30 + 2^29 + 2^28 ) ÷ ( 2^31 + 2^30 - 2^29 ) = 7/10
On LHS
( 2^30 + 2^29 + 2^28 ) ÷ ( 2^31 + 2^30 - 2^29 )
= 2^28 ( 2^2 + 2^1 + 2^0 ) ÷ 2^29 ( 2^2 + 2^1 + 2^0 )
= ( 4 + 2 + 1 ) ÷ 2^29 - 28 ( 4 + 2 - 1 )
= 7 ÷ 2^1 ( 5 )
= 7/ 2× 5
= 7/10
LHS = RHS
Hence proved
✌
On LHS
( 2^30 + 2^29 + 2^28 ) ÷ ( 2^31 + 2^30 - 2^29 )
= 2^28 ( 2^2 + 2^1 + 2^0 ) ÷ 2^29 ( 2^2 + 2^1 + 2^0 )
= ( 4 + 2 + 1 ) ÷ 2^29 - 28 ( 4 + 2 - 1 )
= 7 ÷ 2^1 ( 5 )
= 7/ 2× 5
= 7/10
LHS = RHS
Hence proved
✌
0O9I8U7Y6T:
nice
Answered by
1
Step-by-step explanation:
Similar questions