Math, asked by ranjurathod43allex, 1 year ago

Prove that
(2∧30+2∧29+2∧28)÷(2∧31+2∧30-2∧29)=7/10

Answers

Answered by Thatsomeone
8
(2^30 + 2^29 + 2^28 ) ÷ ( 2^31 + 2^30 - 2^29 ) = 7/10

On LHS

( 2^30 + 2^29 + 2^28 ) ÷ ( 2^31 + 2^30 - 2^29 )

= 2^28 ( 2^2 + 2^1 + 2^0 ) ÷ 2^29 ( 2^2 + 2^1 + 2^0 )

= ( 4 + 2 + 1 ) ÷ 2^29 - 28 ( 4 + 2 - 1 )

= 7 ÷ 2^1 ( 5 )

= 7/ 2× 5

= 7/10

LHS = RHS

Hence proved


0O9I8U7Y6T: nice
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Prove\: that-} \\

   \sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10}

 \bf \underline{Solution-} \\

{~~~~~~:~~~\implies\sf\dfrac{ {2}^{30} +  {2}^{29}  +  {2}^{28}  }{ {2}^{31} +  {2}^{30}  -  {2}^{29}  }  =  \dfrac{7}{10} }\\

\textsf{Taking 2²⁸ Common }

\\{~~~~~~:~~~\implies\sf\dfrac{  {2}^{28}( {2}^{2} +  {2}^{1}  +  {2}^{0}  )}{  {2}^{28} ({2}^{3} +  {2}^{2}  -  {2}^{1})  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   \cancel{{2}^{28}}( 4 +  2  +  1  )}{   \cancel{{2}^{28} }(8 +  4 -  2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{   1 \times   7}{  1(12 - 2)  }  =  \dfrac{7}{10} }\\

\\{~~~~~~:~~~\implies\sf\dfrac{  7}{  10}  =  \dfrac{7}{10} } \\

\textsf{LHS = RHS}\\

 \bf \underline{Hence\: proved.} \\

Similar questions
Math, 7 months ago