PROVE THAT 2+3° IS A IRRATIONAL NUMBER.
MARK US BRAINLIST.
Answers
Answered by
2
Answer:
let us assume 2+√3 as rational.
⇒2+√3=a/b
∴2-a/b=-√3 or √3=a/b-2
⇒√3=a/b-2
√3=a-2b/b
∵a and b are positive integers
∴a-2b/b is rational
⇒√3 is rational
but we know that √3 is irrational
∴⇒2+√3 is irrational
Step-by-step explanation:
let us assume 2+√3 as rational.
⇒2+√3=a/b
∴2-a/b=-√3 or √3=a/b-2
⇒√3=a/b-2
√3=a-2b/b
∵a and b are positive integers
∴a-2b/b is rational
⇒√3 is rational
but we know that √3 is irrational
∴⇒2+√3 is irrational
Anushkasingh456:
mind your language idiot
Similar questions
History,
6 months ago
Hindi,
6 months ago
Math,
11 months ago
Psychology,
11 months ago
English,
1 year ago