prove that 2/ 5√3 is irrational
Answers
Answered by
2
Step-by-step explanation:
Let 2 + 5√3 be rational.
Let 2 + 5√3 be rational.
∴ 2 + 5√3 = p/q ; p, q are integers, q ≠ 0
Let 2 + 5√3 be rational.
∴ 2 + 5√3 = p/q
p, q are integers, q ≠ 0
⇒ √3 = (p/q - 2) ÷ 5
Let 2 + 5√3 be rational.
∴ 2 + 5√3 = p/q
p, q are integers, q ≠ 0
⇒ √3 = (p/q - 2) ÷ 5√3 = (p - 2q)/5q
Let 2 + 5√3 be rational.
∴ 2 + 5√3 = p/q
p, q are integers, q ≠ 0
⇒ √3 = (p/q - 2) ÷ 5√3 = (p - 2q)/5q
LHS is irrational and RHS is rational which is a contradiction.
Let 2 + 5√3 be rational.
∴ 2 + 5√3 = p/q
p, q are integers, q ≠ 0
⇒ √3 = (p/q - 2) ÷ 5√3 = (p - 2q)/5q
LHS is irrational and RHS is rational which is a contradiction.
∴ 2 + 5√3 is irrational.
Hence Proved
Similar questions