Math, asked by Nit2405, 11 months ago

prove that √2 + √5 is irrational​

Answers

Answered by 2ndiidoofTHOR940
2

Answer:

By a theorem,

We know that the sum of two irrational numbers will irrational.

So here root 2 and root 5 are irrational.

So, It is irrational...

Follow me ✌️ ✌️ ✌️ ✌️ ✌️ ✌️ ✌️

Answered by Anonymous
31

AnswEr :

\normalsize\sf\ Let \: \red{\sqrt{2} + \sqrt{5}} \: be \: a \: rational \: number \\ \\ \normalsize\sf\ As,  \: we \: know \:  rational \: number \:  is \: in \:  form  \: of \: \green{\frac{p}{q} }

\normalsize\ : \implies\sf\red{\sqrt{2} + \sqrt{5} } \: = \: \green{\frac{p}{q} }

\normalsize\sf\ \: \: \: \: \: \: \: \: \: [\therefore\ a \: and \: b \: are \: co- prime \: numbers \: and \: b ≠0]

\: \: \: \: \: \underline{\dag\:\textsf{Squaring \: both \: sides:}}

\normalsize\ : \implies\sf\ [\sqrt{2} + \sqrt{5}]^2 \: = \: [\frac{p}{q} ]^2 \\ \\ \normalsize\ : \implies\sf\ [2 + 5 + 2\sqrt{5} ] \: = \: \frac{p^2}{q^2} \\ \\ \normalsize\ : \implies\sf\ 7 + 2\sqrt{10} \: = \: \frac{p^2}{q^2} \\ \\ \normalsize\ : \implies\sf\ 2\sqrt{10} \: = \: \frac{p^2}{q^2} - 7 \\ \\ \normalsize\ : \implies\sf\ 2\sqrt{10} \: = \:  \frac{p^2 - 7q^2}{q^2} \\ \\ \normalsize\ : \implies\sf\sqrt{10} \: = \: \frac{p^2 - 7q^2}{2q^2}

\underline{\dag\: \textsf{Here; \: a \: and \: b \: are \: integers \: }}

\normalsize\ : \implies\sf\frac{p^2 - 7q^2}{2q^2} = Rational \: number ≠ \sqrt{10}

\normalsize\sf\sqrt{10} \: is \: equal \: to \: a \: rational \; number \: but \: it \: contradicts

\normalsize\sf\ that \: \red{\sqrt{10} } \: is \: \red{irrational }

\normalsize\sf\ This \: shows \: that \; our \: assumption \: is \: wrong

\therefore\sf\ Hence, \: \sqrt{2} + \sqrt{5} \: is \: an \: irrational \; number

Similar questions
Math, 11 months ago