prove that √2+√5 is irrational
Answers
Given: √2+√5
We need to prove√2+√5 is an irrational number.
Proof
Let us assume that √2+√5 is a rational number.
A rational number can be written in the form of p/q where p,q are integers and q≠0
√2+√5 = p/q
On squaring both sides we get,
(√2+√5)² = (p/q)²
√2²+√5²+2(√5)(√2) = p²/q²
2+5+2√10 = p²/q²
7+2√10 = p²/q²
2√10 = p²/q² – 7
√10 = (p²-7q²)/2q
p,q are integers then (p²-7q²)/2q is a rational number.
Then √10 is also a rational number.
But this contradicts the fact that √10 is an irrational number.
Our assumption is incorrect
√2+√5 is an irrational number.
Hence proved.
p,q are integers then p square-7q square/2q is a rational number.
Then root10 is also a rational number.
But this contradicts thr fact that root1p is an irrational nunber.
Our assumptiin is incorrect.
so root2+root5 is irrational.
HENCE PROVED.