prove that ( √2 + √5 ) is irrational
Answers
Answered by
1
Answer:
Here is your answer.
Step-by-step explanation:
Given: √2+√5
We need to prove√2+√5 is an irrational number.
Proof
Let us assume that √2+√5 is a rational number.
A rational number can be written in the form of p/q where p,q are integers and q≠0
√2+√5 = p/q
On squaring both sides we get,
(√2+√5)² = (p/q)²
√2²+√5²+2(√5)(√2) = p²/q²
2+5+2√10 = p²/q²
7+2√10 = p²/q²
2√10 = p²/q² – 7
√10 = (p²-7q²)/2q
p,q are integers then (p²-7q²)/2q is a rational number.
Then √10 is also a rational number.
But this contradicts the fact that √10 is an irrational number.
Our assumption is incorrect
√2+√5 is an irrational number.
Hence proved.
Hope this helps.
Please mark me as Brainliest
Answered by
0
Step-by-step explanation:
you can add this line in last this is a contradict fact under root 2 + under root 5 are irrational so under root 2 + under root 5 is irrational
Attachments:
Similar questions
English,
4 months ago
World Languages,
4 months ago
Science,
4 months ago
Science,
8 months ago
Math,
8 months ago
History,
11 months ago
Accountancy,
11 months ago