Math, asked by akashofficial1008, 1 year ago

Prove that 2 bracket open Sin power 6 theta + cos power 6 theta bracket close - 3 bracket sin power 4 theta + cos power 4 theta bracket close + 1 is equal to zero

Answers

Answered by anusha5586
67
Hope it helps u.......
Attachments:
Answered by aquialaska
33

Answer:

Given: 2(sin^6\theta + cos^6\theta)-3(sin^4\theta+cos^4\theta)+1

To Prove: Given Expression equal to 0

Proof,

First consider,

sin^6\theta + cos^6\theta = (sin^2\theta)^3 + (cos^2\theta)^3

using identity, a^3+b^3=(a+b)(a^2+b^2-2ab) we get

\implies (sin^2\theta+cos^2\theta)(sin^4\theta+cos^4\theta-sin^2\theta \times cos^2\theta)

\implies 1\times(sin^4\theta+cos^4\theta-sin^2\theta \times cos^2\theta)     ( ∵ sin^2\theta+cos^2\theta=1)

\implies sin^4\theta+cos^4\theta-sin^2\theta \times cos^2\theta ..........(1)

Now Consider,

sin^4\theta+cos^4\theta=(sin^2\theta)^2+(cos^2\theta)^2

using rule, a^2+b^2=(a+b)^2-2ab we get

\implies (sin^2\theta+cos^2\theta)^2-2\, sin^2\theta\times cos^2\theta

\implies (1)^2-2\, sin^2\theta\times cos^2\theta

\implies 1-2\, sin^2\theta\times cos^2\theta ........ (2)

Now put value of 1. in given expression, we get

2(sin^6\theta + cos^6\theta)-3(sin^4\theta+cos^4\theta)+1

\implies 2(sin^4\theta+cos^4\theta-sin^2\theta \times cos^2\theta)-3(sin^4\theta+cos^4\theta)+1

\implies 2\,sin^4\theta+2\,cos^4\theta-2\,sin^2\theta \times cos^2\theta-3\,sin^4\theta-3\,cos^4\theta+1

\implies 2\,sin^4\theta-3\,sin^4\theta+2\,cos^4\theta-3\,cos^4\theta-2\,sin^2\theta \times cos^2\theta+1

\implies -\,sin^4\theta-\,cos^4\theta-2\,sin^2\theta \times cos^2\theta+1

\implies -\,(sin^4\theta+cos^4\theta)-2\,sin^2\theta \times cos^2\theta+1

Put value of 2

\implies -\,(1-2\, sin^2\theta\times cos^2\theta)-2\,sin^2\theta \times cos^2\theta+1

\implies -\,1+2 \,sin^2\theta\times cos^2\theta-2sin^2\theta \times cos^2\theta+1

\implies -1+1+2\,sin^2\theta\times cos^2\theta-2sin^2\theta \times cos^2\theta

\implies 0

Hence proved

Similar questions