Math, asked by kingpro1264, 9 months ago

Prove that 2 cos^2 theta +2/(1+cot^2 theta)=2.

Answers

Answered by Anonymous
68

\huge\star\frak \orange{\underline{AnSwer:-}}

ᴘʀᴏᴠᴇ :

{\underline{\boxed{\sf\blue{2cos^2\theta \: + \: \frac{2}{1+cot^2\theta} \: = \: 2}}}}

ʀғ :

\normalsize\hookrightarrow\sf\ 2cos^2\theta \: + \: \frac{2}{1 \: + \: cot^2\theta} \: = \: 2

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ 1 +cot^2\theta  =  cosec^2\theta}) }

\normalsize\hookrightarrow\sf\ 2cos^2\theta \: + \: \frac{2}{cosec^2\theta} \: = \: 2

\normalsize\hookrightarrow\sf\ 2cos^2\theta \: + \:  ( \: 2 \times\ \frac{1}{cosec^2\theta} ) \: = \: 2

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{\frac{1}{cosec^2\theta}  =  sin^2\theta}) }

\normalsize\hookrightarrow\sf\ 2cos^2\theta \: + \: 2sin^2\theta \: = \: 2

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ cos^2\theta + sin^2\theta = 1 }) }

\normalsize\hookrightarrow\sf\ 2(\: cos^2\theta \: + \: sin^2\theta)  \\ \\  \normalsize\hookrightarrow\sf\ 2(1) \: = \: 2

\normalsize\hookrightarrow\sf\ L.H.S(2) \: = \: R.H.S(2)

\Large{\underline{\boxed{\sf\red{ \: \: \: \: \: \:Hence  \: prove \: \: \: \: \: \: }}}}

\huge\star\frak \orange{\underline{Some \: Important :-}}

\boxed{\begin{minipage}{6cm} Important  Trigonometric identities :- \\ \\ $\: \: 1)\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\cos^2\theta=1-\sin^2\theta \\ \\ 4)1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5) \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\sec^2\theta=1+\tan^2\theta \\ \\ 8)\sec^2\theta-\tan^2\thetha=1 \\ \\ 9)\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions