Math, asked by govindjangid0748, 10 months ago

Prove that:
2 cos³∅ - cos∅ /sin∅ - 2 sin³∅ == cot∅​

Answers

Answered by SharmaShivam
51

Question:

\sf{Prove\:that\:\dfrac{2cos^3\theta-cos\theta}{sin\theta-2sin^3\theta}=cot\theta}

Identities Used:

\sf{2cos^2\theta-1=cos2\theta}\\\\\sf{1-2sin^2\theta=cos2\theta}\\\\\sf{\dfrac{cos\theta}{sin\theta}=cot\theta}

Solution:

\sf{Taking\:L.H.S.}

\sf{\implies\:\dfrac{2cos^3\theta-cos\theta}{sin\theta-2sin^3\theta}}

\sf{Taking\:cos\theta\:and\:sin\theta\:common}

\sf{\implies\:\dfrac{cos\theta\left(2cos^2\theta-1\right)}{sin\theta\left(1-2sin^2\theta\right)}}

\sf{\implies\:\dfrac{cos\theta.cos2\theta}{sin\theta.cos2\theta}}

\sf{\implies\:\dfrac{cos\theta}{sin\theta}}

\sf{\implies\:cot\theta}

\mathbb{HENCE\:PROVED}

Answered by Anonymous
14

 \large \bigstar\boxed{\bf \red{SOLUTION}} \bigstar \\  \\ \bf On \:Solving \:LHS \\ \\ \Longrightarrow \bf  \frac{2 { \cos }^{3} \theta  -  \cos\theta }{ \sin\theta - 2 { \sin }^{3} \theta }  \\  \\ \Longrightarrow \bf \frac{ \cos \theta(2 { \cos }^{2} \theta - 1) }{ \sin \theta(1 - 2 { \sin  }^{2} x) }  \\  \\\Longrightarrow \bf \frac{ \cos \theta(2 { \cos }^{2} \theta - 1) }{ \sin \theta \{1 - 2 (1 -  { \cos }^{2}\theta )  \}}   \\  \\\Longrightarrow \bf \frac{ \cos \theta(2 { \cos }^{2} \theta - 1) }{ \sin \theta(1 - 2 + 2 { \cos }^{2}\theta) } \\  \\ \Longrightarrow \bf \frac{ {\cos \theta \:  \cancel{(2 { \cos }^{2}\theta - 1)} }}{ \sin \theta \:  \cancel{( - 1 + 2 { \cos }^{2} \theta) }} \\  \\ \Longrightarrow \bf \frac{ \cos \theta }{ \sin \theta }  =  \cot \theta  \\  \\ \bf Which \: is \: equals \: to \: RHS \\  \\  \bf Hence \: Proved

Similar questions